Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Clin Invest ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502231

RESUMO

Neurofibromatosis Type 1 (NF1) is caused by mutations in the NF1 gene that encodes neurofibromin, a RAS GTPase-Activating Protein. Inactivating NF1 mutations cause hyperactivation of RAS-mediated signaling, resulting in development of multiple neoplasms, including Malignant Peripheral Nerve Sheath Tumors (MPNSTs). MPNSTs are an aggressive tumor and the main cause of mortality in NF1 patients. MPNSTs are difficult to resect and refractory to chemo- and radiotherapy, and no molecular therapies currently exist. Immune Checkpoint Blockade (ICB) is an approach to treat inoperable, undruggable cancers like MPNST, but successful outcomes require an immune cell-rich tumor microenvironment (TME). While MPNSTs are non-inflamed "cold" tumors, here, we turned MPNSTs into T cell-inflamed "hot" tumors by activating "stimulator of interferon genes" (STING) signaling. Mouse genetic and human xenograft MPNST models treated with STING agonist plus ICB exhibited growth delay via increased apoptotic cell death. This strategy offers a potential treatment regimen for MPNST.

2.
Cell Rep Med ; 4(12): 101309, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38086379

RESUMO

Cutaneous neurofibromas (cNFs) are tumors that develop in more than 99% of individuals with neurofibromatosis type 1 (NF1). They develop in the dermis and can number in the thousands. cNFs can be itchy and painful and negatively impact self-esteem. There is no US Food and Drug Administration (FDA)-approved drug for their treatment. Here, we screen a library of FDA-approved drugs using a cNF cell model derived from human induced pluripotent stem cells (hiPSCs) generated from an NF1 patient. We engineer an NF1 mutation in the second allele to mimic loss of heterozygosity, differentiate the NF1+/- and NF1-/- hiPSCs into Schwann cell precursors (SCPs), and use them to screen a drug library to assess for inhibition of NF1-/- but not NF1+/- cell proliferation. We identify econazole nitrate as being effective against NF1-/- hiPSC-SCPs. Econazole cream selectively induces apoptosis in Nf1-/- murine nerve root neurosphere cells and human cNF xenografts. This study supports further testing of econazole for cNF treatment.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neurofibroma , Neurofibromatose 1 , Neoplasias Cutâneas , Estados Unidos , Humanos , Animais , Camundongos , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/genética , Neurofibromatose 1/metabolismo , Econazol , Células-Tronco Pluripotentes Induzidas/metabolismo , Neurofibroma/genética , Neurofibroma/metabolismo , Neurofibroma/patologia , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Apoptose/genética
3.
J Invest Dermatol ; 143(8): 1369-1377, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37318402

RESUMO

Neurofibromatosis type 1 is one of the most common genetic disorders of the nervous system and predisposes patients to develop benign and malignant tumors. Cutaneous neurofibromas (cNFs) are NF1-associated benign tumors that affect nearly 100% of patients with NF1. cNFs dramatically reduce patients' QOL owing to their unaesthetic appearance, physical discomfort, and corresponding psychological burden. There is currently no effective drug therapy option, and treatment is restricted to surgical removal. One of the greatest hurdles for cNF management is the variability of clinical expressivity in NF1, resulting in intrapatient and interpatient cNF tumor burden heterogeneity, that is, the variability in the presentation and evolution of these tumors. There is growing evidence that a wide array of factors are involved in the regulation of cNF heterogeneity. Understanding the mechanisms underlying this heterogeneity of cNF at the molecular, cellular, and environmental levels can facilitate the development of innovative and personalized treatment regimens.


Assuntos
Neurofibroma , Neurofibromatose 1 , Neoplasias Cutâneas , Humanos , Neurofibromatose 1/genética , Neurofibromatose 1/terapia , Qualidade de Vida , Carga Tumoral , Neurofibroma/genética , Neoplasias Cutâneas/genética
4.
J Clin Invest ; 133(12)2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37140985

RESUMO

Neurofibromatosis type 1 (NF1) is one of the most common tumor-predisposing genetic disorders. Neurofibromas are NF1-associated benign tumors. A hallmark feature of neurofibromas is an abundant collagen-rich extracellular matrix (ECM) that constitutes more than 50% of the tumor dry weight. However, little is known about the mechanism underlying ECM deposition during neurofibroma development and treatment response. We performed a systematic investigation of ECM enrichment during plexiform neurofibroma (pNF) development and identified basement membrane (BM) proteins, rather than major collagen isoforms, as the most upregulated ECM component. Following MEK inhibitor treatment, the ECM profile displayed an overall downregulation signature, suggesting ECM reduction as a therapeutic benefit of MEK inhibition. Through these proteomic studies, TGF-ß1 signaling was identified as playing a role in ECM dynamics. Indeed, TGF-ß1 overexpression promoted pNF progression in vivo. Furthermore, by integrating single-cell RNA sequencing, we found that immune cells including macrophages and T cells produce TGF-ß1 to induce Schwann cells to produce and deposit BM proteins for ECM remodeling. Following Nf1 loss, neoplastic Schwann cells further increased BM protein deposition in response to TGF-ß1. Our data delineate the regulation governing ECM dynamics in pNF and suggest that BM proteins could serve as biomarkers for disease diagnosis and treatment response.


Assuntos
Neurofibroma , Neurofibromatose 1 , Humanos , Neurofibromatose 1/tratamento farmacológico , Neurofibromatose 1/genética , Neurofibromatose 1/complicações , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Membrana/metabolismo , Proteômica , Neurofibroma/tratamento farmacológico , Neurofibroma/genética , Inibidores de Proteínas Quinases , Colágeno/metabolismo , Membrana Basal/metabolismo , Membrana Basal/patologia , Matriz Extracelular/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno , Células de Schwann/patologia
5.
Oncogene ; 41(17): 2405-2421, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35393544

RESUMO

Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive, invasive cancer that comprise around 10% of all soft tissue sarcomas and develop in about 8-13% of patients with Neurofibromatosis Type 1. They are associated with poor prognosis and are the leading cause of mortality in NF1 patients. MPNSTs can also develop sporadically or following exposure to radiation. There is currently no effective targeted therapy to treat MPNSTs and surgical removal remains the mainstay treatment. Unfortunately, surgery is not always possible due to the size and location of the tumor, thus, a better understanding of MPNST initiation and development is required to design novel therapeutics. Here, we provide an overview of MPNST biology and genetics, discuss findings regarding the developmental origin of MPNST, and summarize the various model systems employed to study MPNST. Finally, we discuss current management strategies for MPNST, as well as recent developments in translating basic research findings into potential therapies.


Assuntos
Neoplasias de Bainha Neural , Neurofibromatose 1 , Neurofibrossarcoma , Sarcoma , Biologia , Humanos , Neoplasias de Bainha Neural/genética , Neoplasias de Bainha Neural/terapia , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Neurofibromatose 1/terapia , Neurofibrossarcoma/complicações , Neurofibrossarcoma/genética , Neurofibrossarcoma/terapia
6.
Eur Urol ; 81(6): 555-558, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34980496

RESUMO

Active surveillance (AS) may be used in the management of metastatic renal cell carcinoma (mRCC), but consensus regarding its application is lacking. We report an exploratory analysis of prospectively collected specimens prespecified in the only modern clinical trial evaluating AS in mRCC. Whole-exome and RNA sequencing were performed for patients providing consent to identify putative biomarkers associated with time on AS (TAS), the primary endpoint. Log-rank tests and multivariable Cox proportional-hazards models were used for analyses. Patients with mutations in either TP53 or SMARCA4 tumor suppressor genes had shorter TAS (7.5 vs 14.2 mo; log-rank p = 0.004). While these patients exhibited features of aggressive disease clinically, the two-gene model was independently predictive in multivariable analyses (hazard ratio 3.30, 95% confidence interval 1.07-10.18; p = 0.038). In conclusion, insight into the underlying RCC biology improves patient selection for AS. If validated, this two-gene model could help in stratifying patients with mRCC and identifying those who are poor candidates for AS. PATIENT SUMMARY: In this study, we analyzed tumors from patients with metastatic kidney cancer enrolled in a clinical trial of imaging surveillance. We found that tumors with mutations in either the TP53 or SMARCA4 gene progressed faster than tumors without these mutations. Thus, patients harboring mutations in these genes may not be good candidates for AS.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/terapia , DNA Helicases/genética , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/terapia , Biologia Molecular , Proteínas Nucleares/genética , Estudos Prospectivos , Estudos Retrospectivos , Fatores de Transcrição/genética , Conduta Expectante
7.
Oncogene ; 41(9): 1235-1251, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35066574

RESUMO

Neurofibromatosis type 1 (NF1) is an autosomal dominant genetic disease and one of the most common inherited tumor predisposition syndromes, affecting 1 in 3000 individuals worldwide. The NF1 gene encodes neurofibromin, a large protein with RAS GTP-ase activating (RAS-GAP) activity, and loss of NF1 results in increased RAS signaling. Neurofibromin contains many other domains, and there is considerable evidence that these domains play a role in some manifestations of NF1. Investigating the role of these domains as well as the various signaling pathways that neurofibromin regulates and interacts with will provide a better understanding of how neurofibromin acts to suppress tumor development and potentially open new therapeutic avenues. In this review, we discuss what is known about the structure of neurofibromin, its interactions with other proteins and signaling pathways, its role in development and differentiation, and its function as a tumor suppressor. Finally, we discuss the latest research on potential therapeutics for neurofibromin-deficient neoplasms.


Assuntos
Neurofibromina 1
8.
JID Innov ; 1(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34604833

RESUMO

Neurofibromatosis type 1 (NF1) is one of the most common neurocutaneous genetic disorders, presenting with different cutaneous features such as café-au-lait macules, intertriginous skin freckling, and neurofibromas. Although most of the disease manifestations are benign, patients are at risk for a variety of malignancies, including malignant transformation of plexiform neurofibromas. Numerous studies have investigated the mechanisms by which these characteristic neurofibromas develop, with progress made toward unraveling the various players involved in their complex pathogenesis. In this review, we summarize the current understanding of the cells that give rise to NF1 neoplasms as well as the molecular mechanisms and cellular changes that confer tumorigenic potential. We also discuss the role of the tumor microenvironment and the key aspects of its various cell types that contribute to NF1-associated tumorigenesis. An increased understanding of these intrinsic and extrinsic components is critical for developing novel therapeutic approaches for affected patients.

9.
JCI Insight ; 6(20)2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34499624

RESUMO

Dry eye disease affects over 16 million adults in the US, and the majority of cases are due to Meibomian gland dysfunction. Unfortunately, the identity of the stem cells involved in Meibomian gland development and homeostasis is not well elucidated. Here, we report that loss of Krox20, a zinc finger transcription factor involved in the development of ectoderm-derived tissues, or deletion of KROX20-expressing epithelial cells disrupted Meibomian gland formation and homeostasis, leading to dry eye disease secondary to Meibomian gland dysfunction. Ablation of Krox20-lineage cells in adult mice also resulted in dry eye disease, implicating Krox20 in homeostasis of the mature Meibomian gland. Lineage-tracing and expression analyses revealed a restricted KROX20 expression pattern in the ductal areas of the Meibomian gland, although Krox20-lineage cells generate the full, mature Meibomian gland. This suggests that KROX20 marks a stem/progenitor cell population that differentiates to generate the entire Meibomian gland. Our Krox20 mouse models provide a powerful system that delineated the identity of stem cells required for Meibomian gland development and homeostasis and can be used to investigate the factors underlying these processes. They are also robust models of Meibomian gland dysfunction-related dry eye disease, with a potential for use in preclinical therapeutic screening.


Assuntos
Síndromes do Olho Seco/fisiopatologia , Células Epiteliais/metabolismo , Disfunção da Glândula Tarsal/fisiopatologia , Células-Tronco/metabolismo , Animais , Homeostase , Camundongos
10.
Oncogene ; 40(39): 5781-5787, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34345017

RESUMO

Neurofibromatosis Type 1 (NF1) is one of the most common inherited neurological disorders and predisposes patients to develop benign and malignant tumors. Neurofibromas are NF1-associated benign tumors but can cause substantial discomfort and disfigurement. Numerous studies have shown that neurofibromas arise from the Schwann cell lineage but both preclinical mouse models and clinical trials have demonstrated that the neurofibroma tumor microenvironment contributes significantly to tumorigenesis. This offers the opportunity for targeting new therapeutic vulnerabilities to treat neurofibromas. However, a translational gap exists between deciphering the contribution of the neurofibroma tumor microenvironment and clinically applying this knowledge to treat neurofibromas. Here, we discuss the key cellular and molecular components in the neurofibroma tumor microenvironment that can potentially be targeted therapeutically to advance neurofibroma treatment.


Assuntos
Neurofibromatose 1 , Animais , Carcinogênese , Transformação Celular Neoplásica , Genótipo , Camundongos , Neurofibroma , Células de Schwann , Microambiente Tumoral
11.
Clin Cancer Res ; 27(17): 4794-4806, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34210685

RESUMO

PURPOSE: Intratumoral heterogeneity (ITH) challenges the molecular characterization of clear cell renal cell carcinoma (ccRCC) and is a confounding factor for therapy selection. Most approaches to evaluate ITH are limited by two-dimensional ex vivo tissue analyses. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can noninvasively assess the spatial landscape of entire tumors in their natural milieu. To assess the potential of DCE-MRI, we developed a vertically integrated radiogenomics colocalization approach for multi-region tissue acquisition and analyses. We investigated the potential of spatial imaging features to predict molecular subtypes using histopathologic and transcriptome correlatives. EXPERIMENTAL DESIGN: We report the results of a prospective study of 49 patients with ccRCC who underwent DCE-MRI prior to nephrectomy. Surgical specimens were sectioned to match the MRI acquisition plane. RNA sequencing data from multi-region tumor sampling (80 samples) were correlated with percent enhancement on DCE-MRI in spatially colocalized regions of the tumor. Independently, we evaluated clinical applicability of our findings in 19 patients with metastatic RCC (39 metastases) treated with first-line antiangiogenic drugs or checkpoint inhibitors. RESULTS: DCE-MRI identified tumor features associated with angiogenesis and inflammation, which differed within and across tumors, and likely contribute to the efficacy of antiangiogenic drugs and immunotherapies. Our vertically integrated analyses show that angiogenesis and inflammation frequently coexist and spatially anti-correlate in the same tumor. Furthermore, MRI contrast enhancement identifies phenotypes with better response to antiangiogenic therapy among patients with metastatic RCC. CONCLUSIONS: These findings have important implications for decision models based on biopsy samples and highlight the potential of more comprehensive imaging-based approaches.


Assuntos
Carcinoma de Células Renais/diagnóstico por imagem , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Neoplasias Renais/diagnóstico por imagem , Neoplasias Renais/genética , Neoplasias Renais/patologia , Imageamento por Ressonância Magnética/métodos , Genômica por Radiação , Microambiente Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/uso terapêutico , Carcinoma de Células Renais/tratamento farmacológico , Feminino , Humanos , Neoplasias Renais/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
13.
Clin Cancer Res ; 26(4): 793-803, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727677

RESUMO

PURPOSE: The heterodimeric transcription factor HIF-2 is arguably the most important driver of clear cell renal cell carcinoma (ccRCC). Although considered undruggable, structural analyses at the University of Texas Southwestern Medical Center (UTSW, Dallas, TX) identified a vulnerability in the α subunit, which heterodimerizes with HIF1ß, ultimately leading to the development of PT2385, a first-in-class inhibitor. PT2385 was safe and active in a first-in-human phase I clinical trial of patients with extensively pretreated ccRCC at UTSW and elsewhere. There were no dose-limiting toxicities, and disease control ≥4 months was achieved in 42% of patients. PATIENTS AND METHODS: We conducted a prospective companion substudy involving a subset of patients enrolled in the phase I clinical trial at UTSW (n = 10), who were treated at the phase II dose or above, involving multiparametric MRI, blood draws, and serial biopsies for biochemical, whole exome, and RNA-sequencing studies. RESULTS: PT2385 inhibited HIF-2 in nontumor tissues, as determined by a reduction in erythropoietin levels (a pharmacodynamic marker), in all but one patient, who had the lowest drug concentrations. PT2385 dissociated HIF-2 complexes in ccRCC metastases, and inhibited HIF-2 target gene expression. In contrast, HIF-1 complexes were unaffected. Prolonged PT2385 treatment resulted in the acquisition of resistance, and we identified a gatekeeper mutation (G323E) in HIF2α, which interferes with drug binding and precluded HIF-2 complex dissociation. In addition, we identified an acquired TP53 mutation elsewhere, suggesting a possible alternate mechanism of resistance. CONCLUSIONS: These findings demonstrate a core dependency on HIF-2 in metastatic ccRCC and establish PT2385 as a highly specific HIF-2 inhibitor in humans. New approaches will be required to target mutant HIF-2 beyond PT2385 or the closely related PT2977 (MK-6482).


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Carcinoma de Células Renais/tratamento farmacológico , Indanos/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Sulfonas/uso terapêutico , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Ensaios Clínicos Fase I como Assunto , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética Multiparamétrica/métodos , Estudos Prospectivos
14.
EBioMedicine ; 51: 102526, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31859241

RESUMO

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is a particularly challenging tumor type because of its extensive phenotypic variability as well as intra-tumoral heterogeneity (ITH). Clinically, this complexity has been reduced to a handful of pathological variables such as stage, grade and necrosis, but these variables fail to capture the breadth of the disease. How different phenotypes affect patient prognosis and influence therapeutic response is poorly understood. Extensive ITH illustrates remarkable plasticity, providing a framework to study tumor evolution. While multiregional genomic analyses have shown evolution from an ancient clone that acquires metastatic competency over time, these studies have been conducted agnostic to morphological cues and phenotypic plasticity. METHODS: We established a systematic ontology of ccRCC phenotypic variability by developing a multi-scale framework along three fundamental axes: tumor architecture, cytology and the microenvironment. We defined 33 parameters, which we comprehensively evaluated in 549 consecutive ccRCCs retrospectively. We systematically evaluated the impact of each parameter on patient outcomes, and assessed their contribution through multivariate analyses. We measured therapeutic impact in the context of anti-angiogenic therapies. We applied dimensionality reduction by t-distributed stochastic neighbor embedding (t-SNE) algorithms to tumor architectures for the study of tumor evolution superimposing tumor size and grade vectors. Evolutionary models were refined through empirical analyses of directed evolution of tumor intravascular extensions, and metastatic competency (as determined by tumor reconstitution in a heterologous host). FINDINGS: We discovered several novel ccRCC phenotypes, developed an integrated taxonomy, and identified features that improve current prognostic models. We identified a subset of ccRCCs refractory to anti-angiogenic therapies. We developed a model of tumor evolution, which revealed converging evolutionary trajectories into an aggressive type. INTERPRETATION: This work serves as a paradigm for deconvoluting tumor complexity and illustrates how morphological analyses can improve our understanding of ccRCC pleiotropy. We identified several subtypes associated with aggressive biology, and differential response to targeted therapies. By analyzing patterns of spatial and temporal co-occurrence, intravascular tumor extensions and metastatic competency, we were able to identify distinct trajectories of convergent phenotypic evolution.


Assuntos
Carcinoma de Células Renais/classificação , Carcinoma de Células Renais/patologia , Neoplasias Renais/classificação , Neoplasias Renais/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Animais , Carcinoma de Células Renais/irrigação sanguínea , Carcinoma de Células Renais/tratamento farmacológico , Intervalo Livre de Doença , Feminino , Heterogeneidade Genética , Humanos , Neoplasias Renais/irrigação sanguínea , Neoplasias Renais/tratamento farmacológico , Masculino , Camundongos Endogâmicos NOD , Camundongos SCID , Análise Multivariada , Invasividade Neoplásica , Estadiamento de Neoplasias , Neovascularização Patológica/patologia , Fenótipo , Prognóstico , Fatores de Risco , Processos Estocásticos , Microambiente Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
15.
J Immunother Cancer ; 7(1): 144, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31155004

RESUMO

BACKGROUND: Programmed death-ligand 1 (PD-L1) expression in metastatic renal cell carcinoma (RCC) correlates with a worse prognosis, but whether it also predicts responsiveness to anti-PD-1/PD-L1 therapy remains unclear. Most studies of PD-L1 are limited by evaluation in primary rather than metastatic sites, and in biopsy samples, which may not be representative. These limitations may be overcome with immuno-positron emission tomography (iPET), an emerging tool allowing the detection of cell surface proteins with radiolabeled antibodies. Here, we report iPET studies of PD-L1 in a preclinical tumorgraft model of clear cell RCC (ccRCC) from a patient who had a favorable response to anti-PD-1 therapy. CASE PRESENTATION: A 49-year-old man underwent a cytoreductive nephrectomy in 2017 of a right kidney tumor invading into the adrenal gland that was metastatic to the lungs and a rib. Histological analyses revealed a ccRCC of ISUP grade 4 with extensive sarcomatoid features. IMDC risk group was poor. Within two hours of surgery, a tumor sample was implanted orthotopically into NOD/SCID mice. Consistent with an aggressive tumor, a renal mass was detected 18 days post-implantation. Histologically, the tumorgraft showed sarcomatoid differentiation and high levels of PD-L1, similar to the patient's tumor. PD-L1 was evaluated in subsequently transplanted mice using iPET and the results were compared to control mice implanted with a PD-L1-negative tumor. We labeled atezolizumab, an anti-PD-L1 antibody with a mutant Fc, with zirconium-89. iPET revealed significantly higher 89Zr-atezolizumab uptake in index than control tumorgrafts. The patient was treated with high-dose IL2 initially, and subsequently with pazopanib, with rapidly progressive disease, but had a durable response with nivolumab. CONCLUSIONS: To our knowledge, this is the first report of non-invasive detection of PD-L1 in renal cancer using molecular imaging. This study supports clinical evaluation of iPET to identify RCC patients with tumors deploying the PD-L1 checkpoint pathway who may be most likely to benefit from PD-1/PD-L1 disrupting drugs.


Assuntos
Anticorpos Monoclonais Humanizados , Antígeno B7-H1/metabolismo , Carcinoma de Células Renais/diagnóstico , Carcinoma de Células Renais/metabolismo , Tomografia por Emissão de Pósitrons , Radioisótopos , Compostos Radiofarmacêuticos , Zircônio , Animais , Antineoplásicos Imunológicos/administração & dosagem , Antineoplásicos Imunológicos/efeitos adversos , Antineoplásicos Imunológicos/uso terapêutico , Biomarcadores Tumorais , Carcinoma de Células Renais/tratamento farmacológico , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Pessoa de Meia-Idade , Nivolumabe/administração & dosagem , Nivolumabe/efeitos adversos , Nivolumabe/uso terapêutico , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada por Raios X , Resultado do Tratamento
16.
Cancer Discov ; 7(8): 900-917, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28473526

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by BAP1 and PBRM1 mutations, which are associated with tumors of different grade and prognosis. However, whether BAP1 and PBRM1 loss causes ccRCC and determines tumor grade is unclear. We conditionally targeted Bap1 and Pbrm1 (with Vhl) in the mouse using several Cre drivers. Sglt2 and Villin proximal convoluted tubule drivers failed to cause tumorigenesis, challenging the conventional notion of ccRCC origins. In contrast, targeting with PAX8, a transcription factor frequently overexpressed in ccRCC, led to ccRCC of different grades. Bap1-deficient tumors were of high grade and showed greater mTORC1 activation than Pbrm1-deficient tumors, which exhibited longer latency. Disrupting one allele of the mTORC1 negative regulator, Tsc1, in Pbrm1-deficient kidneys triggered higher grade ccRCC. This study establishes Bap1 and Pbrm1 as lineage-specific drivers of ccRCC and histologic grade, implicates mTORC1 as a tumor grade rheostat, and suggests that ccRCCs arise from Bowman capsule cells.Significance: Determinants of tumor grade and aggressiveness across cancer types are poorly understood. Using ccRCC as a model, we show that Bap1 and Pbrm1 loss drives tumor grade. Furthermore, we show that the conversion from low grade to high grade can be promoted by activation of mTORC1. Cancer Discov; 7(8); 900-17. ©2017 AACR.See related commentary by Leung and Kim, p. 802This article is highlighted in the In This Issue feature, p. 783.


Assuntos
Carcinoma de Células Renais/genética , Proteínas HMGB/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Carcinogênese/genética , Carcinoma de Células Renais/patologia , Proteínas de Ligação a DNA , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Humanos , Camundongos , Proteínas dos Microfilamentos/genética , Mutação , Prognóstico , Transportador 2 de Glucose-Sódio/genética , Fatores de Transcrição
17.
Nature ; 539(7627): 112-117, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27595394

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by inactivation of the von Hippel-Lindau tumour suppressor gene (VHL). Because no other gene is mutated as frequently in ccRCC and VHL mutations are truncal, VHL inactivation is regarded as the governing event. VHL loss activates the HIF-2 transcription factor, and constitutive HIF-2 activity restores tumorigenesis in VHL-reconstituted ccRCC cells. HIF-2 has been implicated in angiogenesis and multiple other processes, but angiogenesis is the main target of drugs such as the tyrosine kinase inhibitor sunitinib. HIF-2 has been regarded as undruggable. Here we use a tumourgraft/patient-derived xenograft platform to evaluate PT2399, a selective HIF-2 antagonist that was identified using a structure-based design approach. PT2399 dissociated HIF-2 (an obligatory heterodimer of HIF-2α-HIF-1ß) in human ccRCC cells and suppressed tumorigenesis in 56% (10 out of 18) of such lines. PT2399 had greater activity than sunitinib, was active in sunitinib-progressing tumours, and was better tolerated. Unexpectedly, some VHL-mutant ccRCCs were resistant to PT2399. Resistance occurred despite HIF-2 dissociation in tumours and evidence of Hif-2 inhibition in the mouse, as determined by suppression of circulating erythropoietin, a HIF-2 target and possible pharmacodynamic marker. We identified a HIF-2-dependent gene signature in sensitive tumours. Gene expression was largely unaffected by PT2399 in resistant tumours, illustrating the specificity of the drug. Sensitive tumours exhibited a distinguishing gene expression signature and generally higher levels of HIF-2α. Prolonged PT2399 treatment led to resistance. We identified binding site and second site suppressor mutations in HIF-2α and HIF-1ß, respectively. Both mutations preserved HIF-2 dimers despite treatment with PT2399. Finally, an extensively pretreated patient whose tumour had given rise to a sensitive tumourgraft showed disease control for more than 11 months when treated with a close analogue of PT2399, PT2385. We validate HIF-2 as a target in ccRCC, show that some ccRCCs are HIF-2 independent, and set the stage for biomarker-driven clinical trials.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/antagonistas & inibidores , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/metabolismo , Indanos/farmacologia , Indanos/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/metabolismo , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Eritropoetina/antagonistas & inibidores , Eritropoetina/sangue , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Indanos/administração & dosagem , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Terapia de Alvo Molecular , Mutação , Pirróis/farmacologia , Pirróis/uso terapêutico , Reprodutibilidade dos Testes , Sulfonas/administração & dosagem , Sunitinibe , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 6(19): 16951-62, 2015 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-26219258

RESUMO

Renal cell carcinoma (RCC) accounts for 85% of primary renal neoplasms, and is rarely curable when metastatic. Approximately 70% of RCCs are clear-cell type (ccRCC), and in >80% the von Hippel-Lindau (VHL) gene is mutated or silenced. We developed a novel, high-content, screening strategy for the identification of small molecules that are synthetic lethal with genes mutated in cancer. In this strategy, the screen and counterscreen are conducted simultaneously by differentially labeling mutant and reconstituted isogenic tumor cell line pairs with different fluorochromes and using a highly sensitive high-throughput imaging-based platform. This approach minimizes confounding factors from sequential screening, and more accurately replicates the in vivo cancer setting where cancer cells are adjacent to normal cells. A screen of ~12,800 small molecules identified homoharringtonine (HHT), an FDA-approved drug for treating chronic myeloid leukemia, as a VHL-synthetic lethal agent in ccRCC. HHT induced apoptosis in VHL-mutant, but not VHL-reconstituted, ccRCC cells, and inhibited tumor growth in 30% of VHL-mutant patient-derived ccRCC tumorgraft lines tested. Building on a novel screening strategy and utilizing a validated RCC tumorgraft model recapitulating the genetics and drug responsiveness of human RCC, these studies identify HHT as a potential therapeutic agent for a subset of VHL-deficient ccRCCs.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Renais/genética , Harringtoninas/farmacologia , Neoplasias Renais/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Ensaios de Triagem em Larga Escala/métodos , Mepesuccinato de Omacetaxina , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Proc Natl Acad Sci U S A ; 111(46): 16538-43, 2014 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-25359211

RESUMO

Why different species are predisposed to different tumor spectra is not well understood. In particular, whether the physical location of tumor suppressor genes relative to one another influences tumor predisposition is unknown. Renal cancer presents a unique opportunity to explore this question. Renal cell carcinoma (RCC) of clear-cell type (ccRCC), the most common type, begins with an intragenic mutation in the von Hippel-Lindau (VHL) gene and loss of 3p (where VHL is located). Chromosome 3p harbors several additional tumor suppressor genes, including BRCA1-associated protein-1 (BAP1). In the mouse, Vhl is on a different chromosome than Bap1. Thus, whereas loss of 3p in humans simultaneously deletes one copy of BAP1, loss of heterozygosity in the corresponding Vhl region in the mouse would not affect Bap1. To test the role of BAP1 in ccRCC development, we generated mice deficient for either Vhl or Vhl together with one allele of Bap1 in nephron progenitor cells. Six2-Cre;Vhl(F/F);Bap1(F/+) mice developed ccRCC, but Six2-Cre;Vhl(F/F) mice did not. Kidneys from Six2-Cre;Vhl(F/F);Bap1(F/+) mice resembled kidneys from humans with VHL syndrome, containing multiple lesions spanning from benign cysts to cystic and solid RCC. Although the tumors were small, they showed nuclear atypia and exhibited features of human ccRCC. These results provide an explanation for why VHL heterozygous humans, but not mice, develop ccRCC. They also explain why a mouse model of ccRCC has been lacking. More broadly, our data suggest that differences in tumor predisposition across species may be explained, at least in part, by differences in the location of two-hit tumor suppressor genes across the genome.


Assuntos
Carcinoma de Células Renais/genética , Modelos Animais de Doenças , Genes Supressores de Tumor , Falência Renal Crônica/genética , Neoplasias Renais/genética , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina Tiolesterase/fisiologia , Proteína Supressora de Tumor Von Hippel-Lindau/fisiologia , Idade de Início , Alelos , Animais , Linhagem da Célula , Mapeamento Cromossômico , Feminino , Genes Reporter , Genes Sintéticos , Predisposição Genética para Doença , Humanos , Doenças Renais Císticas/genética , Doenças Renais Císticas/patologia , Falência Renal Crônica/sangue , Falência Renal Crônica/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Modelos Genéticos , Células-Tronco Multipotentes/metabolismo , Células-Tronco Multipotentes/patologia , Mutação , Fenótipo , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/patologia , Especificidade da Espécie , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores , Proteína Supressora de Tumor Von Hippel-Lindau/genética
20.
Mol Cancer Res ; 12(6): 867-77, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24615339

RESUMO

UNLABELLED: Glucocorticoids induce apoptosis in lymphocytes and are commonly used to treat hematologic malignancies. However, they are also associated with significant adverse effects and their molecular mechanism of action is not fully understood. Glucocorticoid treatment induces expression of the mTORC1 inhibitor Regulated in Development and DNA Damage Response 1 (REDD1), also known as DNA-Damage Inducible Transcript 4 (DDIT4), and mTORC1 inhibition may distinguish glucocorticoid-sensitive from glucocorticoid-resistant acute lymphoblastic leukemia (ALL). Interestingly, REDD1 induction was impaired in glucocorticoid-resistant ALL cells and inhibition of mTORC1 using rapamycin restored glucocorticoid sensitivity. These data suggest that REDD1 may be essential for the response of ALL cells to glucocorticoids. To further investigate the role of REDD1, we evaluated the effects of glucocorticoids on primary thymocytes from wild-type and REDD1-deficient mice. Glucocorticoid-mediated apoptosis was blocked by a glucocorticoid receptor antagonist and by an inhibitor of transcription, which interfered with REDD1 induction and mTORC1 inhibition. However, REDD1 ablation had no effect on glucocorticoid-induced mTORC1 inhibition and apoptosis in thymocytes ex vivo. Overall, these data not only demonstrate the contextual differences of downstream signaling following glucocorticoid treatment but also provide a better mechanistic understanding of the role of REDD1. IMPLICATIONS: These molecular findings underlying glucocorticoid action and the role of REDD1 are fundamental for the design of novel, more efficacious, and less toxic analogs. Mol Cancer Res; 12(6); 867-77. ©2014 AACR.


Assuntos
Glucocorticoides/farmacologia , Complexos Multiproteicos/antagonistas & inibidores , Serina-Treonina Quinases TOR/antagonistas & inibidores , Timócitos/efeitos dos fármacos , Timócitos/metabolismo , Fatores de Transcrição/metabolismo , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Criança , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Timócitos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...